中华人民共和国国家标准
建筑地基基础术语标准
Standard for terms used in building foundation
GB/T 50941-2014
主编部门:中华人民共和国住房和城乡建设部
批准部门:中华人民共和国住房和城乡建设部
施行日期:2014年12月1日
中华人民共和国住房和城乡建设部公告
第366号
住房城乡建设部关于发布国家标准《建筑地基基础术语标准》的公告
现批准《建筑地基基础术语标准》为国家标准,编号为GB/T 50941-2014,自2014年12月1日起实施。
本标准由我部标准定额研究所组织中国建筑工业出版社出版发行。
中华人民共和国住房和城乡建设部
2014年3月31日
前言
根据住房和城乡建设部《关于印发<2008年工程建设标准规范制订、修订计划(第一批)>的通知》(建标[2008]102号)的要求,标准编制组经广泛调查研究,认真总结实践经验,参考有关国际标准和国外先进标准,并在广泛征求意见的基础上,编制本标准。
本标准的主要技术内容是:总则、基本术语、设计原则、岩土的工程分类及特性指标、工程勘察、天然地基、地基处理、浅基础、桩基础、沉井与沉箱基础、动力机器基础、既有建筑地基基础加固、地震与抗震、基坑与建筑边坡工程、施工、检测与监测。
本标准由住房和城乡建设部负责管理,由中国建筑科学研究院负责具体技术内容的解释。执行过程中如有意见或建议,请寄送中国建筑科学研究院(地址:北京市北三环东路30号,邮编:100013)。
本标准主编单位:中国建筑科学研究院
浙江宝业建设集团有限公司
本标准参编单位:清华大学
浙江大学
同济大学
天津大学
建设综合勘察研究设计院有限公司
中国建筑设计研究院
中国兵器工业北方勘察设计研究院
本标准主要起草人员:高文生 葛兴杰 钱力航 朱玉明 高大钊 李广信 龚晓南 武威 任庆英 王长科 郑刚 王杰
本标准主要审查人员:王正宏 顾晓鲁 顾宝和 张雁 沈小克 王卫东 宋二祥 贡金鑫 康景文 史志华 顾国荣
▼ 展开条文说明
1 总 则
1.0.1 为规范建筑地基基础专业的术语及其涵义,制定本标准。
▼ 展开条文说明
1.0.2 本标准适用于建筑地基基础专业。
▼ 展开条文说明
1.0.3 建筑地基基础专业术语,除应符合本标准外,尚应符合国家现行有关标准的规定。
2 基本术语
2.0.1 岩石 rock
经地质作用形成的由矿物颗粒间牢固联结、呈整体或具有节理裂隙的集合体。
2.0.2 土 soil
岩石经风化作用形成的岩屑与矿物颗粒,在原地或经搬运在异地混入自然界中的其他物质后形成的堆积物。
2.0.3 岩土工程 geotechnical engineering
土木工程中与岩石、土、地下水有关的部分。
2.0.4 岩土工程勘察 geotechnical investigation
根据建设工程的要求,查明、分析、评价建设场地的地质、环境特征和岩土工程条件,编制勘察文件的活动。
2.0.5 岩土工程设计 geotechnical design
根据建筑场地的地质、环境特征和工程要求进行的岩土工程范畴的方案设计与施工图设计。
▼ 展开条文说明
2.0.6 地基 foundation soil
支承基础的土体或岩体。
▼ 展开条文说明
2.0.7 天然地基 natural foundation
自然形成的、未经人工处理的地基。
2.0.8 地基处理 ground improvement
为提高地基强度或改善其变形性能或渗透性能而采取的技术措施。
2.0.9 人工地基 artifical foundation
天然地基采用地基处理技术措施进行处理后形成的地基。
2.0.10 地基承载力 bearing capacity of subsoil
地基承受荷载的能力。
2.0.11 地基稳定性 stability of subsoil
地基在荷载作用下不发生过大变形或滑动的性质。
2.0.12 基础 foundation
将结构所承受的各种作用传递到地基上的结构组成部分。
2.0.13 浅基础 shallow foundation
埋置深度不超过5m,或不超过基底最小宽度,在其承载力中不计入基础侧壁岩土摩阻力的基础。
▼ 展开条文说明
2.0.14 深基础 deep foundation
埋置深度超过5m,或超过基底最小宽度,在其承载力中计入基础侧壁岩土摩阻力的基础。
2.0.15 桩基础 pile foundation
由设置于岩土中的桩和与桩顶连接的承台共同组成的基础,或由柱与桩直接连接的单桩基础。
2.0.16 动力机器基础 dynamic machine foundation
承受机械设备所产生的静力、振动力、不平衡扰力或冲击力的基础。
2.0.17 基坑工程 excavation engineering
为保证地面向下开挖形成的地下空间在地下结构施工期间的安全稳定所需的挡土结构及地下水控制、环境保护等措施的总称。
2.0.18 建筑边坡 building slope
在建筑场地或其周边的对建筑物有影响的自然边坡,或由于土方开挖、填筑形成的人工边坡。
3 设计原则
3.1 设计方法
3.1.1 容许应力法 allowable stress method
使结构或地基在作用标准值下产生的应力不超过规定的容许应力(材料或岩土强度标准值除以安全系数)的设计方法。
3.1.2 单一安全系数法 single safety factor method
使结构或地基的抗力标准值与作用标准值的效应之比不低于规定安全系数的设计方法。
3.1.3 全概率设计法 probability design method
将基本变量作为随机变量处理,采用以统计分析为主确定失效概率量度设计可靠性的一种设计方法。
3.1.4 分项系数法 approximate probability method
以校准法为基础,采用分项系数描述的设计表达式进行设计的一种近似概率设计方法。
3.2 安全度控制
3.2.1 安全储备 safety margin
用抗力与作用之差描述的安全度控制指标。
3.2.2 安全性 safety
结构或地基基础在正常施工和正常使用条件下,承受可能出现的各种作用的能力,以及在偶然事件发生时和发生后,仍保持必要的整体稳定性的能力。
3.2.3 安全系数 factor of safety
在正常设计、施工和使用条件下,结构抵抗各种影响安全的不利因素所必需的安全储备。通常用结构或地基基础的抗力效应与所承受的作用效应的比值来表示。
▼ 展开条文说明
3.2.4 分项系数 partial factor
为保证所设计的结构或地基基础具有规定的可靠度而在设计表达式中设定的系数,分为作用分项系数和抗力分项系数两大类,作用分项系数为作用设计值与作用标准值之比,抗力分项系数为抗力标准值与抗力设计值之比。
3.2.5 可靠度 reliability
结构或地基基础在规定的时间内,在规定的条件下完成预定功能的概率。
3.2.6 失效概率 failure probability
结构或地基基础不能完成预定功能的概率。
3.2.7 可靠指标 reliability index
度量结构或地基基础可靠度的数值指标,是标准正态分布反函数在可靠概率处的函数值。
3.2.8 安全等级 safety grade
为了使结构或地基基础具有合理的安全性,根据建筑物破坏所产生后果的严重性划分的设计等级。
3.3 设计状况
3.3.1 设计状况 design situations
代表一定时段内实际情况的一组设计条件,设计应做到在该组条件下结构不超越有关的极限状态。
3.3.2 持久状况 persistent situation
在结构或地基基础使用过程中一定会出现的设计状况,其持续期很长且与设计使用年限为同一数量级。
3.3.3 短暂状况 transient situation
在结构或地基基础施工和使用过程中出现概率较大、与设计使用年限相比持续期很短的设计状况。
3.3.4 偶然状况 accidental situation
在结构或地基基础使用过程中出现概率很小、持续期很短的设计状况。
3.3.5 极限状态 limit state
整个结构或地基基础,或其一部分超过某一特定状态就不能满足设计规定的某一功能要求的状态。
3.3.6 承载能力极限状态 limit state of bearing capacity
对应于结构或地基基础达到最大承载能力或达到不适于继续承载的变形的状态。
3.3.7 正常使用极限状态 serviceability limit state
对应于结构或地基基础达到使用或耐久性能的某一限值的状态。
3.3.8 基本变量 basic variable
影响结构或地基基础可靠度的各主要随机变量。
581'>《建筑地基基础术语标准[附条文说明]》GB/T 50941-2014附录B 英文索引
A
accidental load 3.4.4
accidental situation 3.3.4
active earth pressure 14.3.2
active isolation 11.3.1
activity index 4.2.34
additional stress 4.5.2
adverse geologic actions 5.3.1
aeolian soil 4.3.8
alarm value on monitoring 16.3.2
allowable bearing capacity of subsoil 6.2.3
allowable inclination of structure 12.1.1
allowable stress method 3.1.1
allowable subsoil deformation 6.3.1
alluvial fan 5.1.4
alluvial plain 5.1.7
alluvial soil 4.3.7
analysis of soil-foundation-structure interaction 3.5.15
anchor and static pressure pile underpinning 12.2.3
anchored length 14.3.11
anchored retaining wall 14.2.16
approximate probability method 3.1.4
aquifer 5.7.10
aquitard 5.7.9
artifical foundation 2.0.9
attitude 5.2.8
average grain diameter 4.2.7
B
basic variable 3.3.8
beam and slab raft foundation 8.3.1
beam on elastic foundation 8.1.14
bearing capacity of anchor 14.3.10
bearing capacity of subsoil 2.0.10
bearing stratum 6.1.2
bedrock 6.1.1
bending rigidity 8.1.16
bermed excavation 15.0.13
Biot′s consolidation theory 3.5.8
block foundation 11.2.1
bore core 5.5.6
boring 5.5.5
bottom plug 10.0.5
boulder 4.3.33
bound water 4.4.1
Boussinesq′s solution 3.5.4
box foundation 8.1.6
brick foundation 8.2.1
broken stone 4.3.32
building slope 2.0.18
buoyancy 3.4.13
buoyant unit weight 4.2.19
C
caisson 10.0.6
caisson curb 10.0.2
California bearing ratio test 5.6.15
cantilever retaining structure 14.2.6
capillary water 4.4.3
cast-in-place pile 9.2.6
cast-in-place pile underpinning 12.2.6
catch pit 14.4.4
characteristic value of a load 3.4.6
characteristic value of earthquake action 3.4.12
characteristic value of subsoil bearing capacity 6.2.4
characteristic value of the horizontal bearing capaci-ty of single pile 9.3.4
characteristic value of the vertical bearing capacity of single pile 9.3.2
characteristic value of the vertical uplift bearing ca-pacity of single pile 9.3.6
clay 4.3.41
climate influenced layer 6.4.27
coarse-gained soil 4.3.27
cobble 4.3.35
coefficient of collapsibility 6.4.15
coefficient of compaction 15.0.17
coefficient of compressibility 4.6.14
coefficient of curvature 4.2.11
coefficient of dissolution collapsibility 6.4.30
coefficient of non-uniformity 4.2.10
coefficient of permeability 4.4.13
coefficient of seismic effect 13.3.1
coefficient of self-weight collapsibility 6.4.16
coefficient of shrinkage 6.4.21
coefficient of subgrade reaction 8.3.6
coefficient of subsoil bearing capacity modified by foundation depth 6.2.7
coefficient of subsoil bearing capacity modified by foundation width 6.2.6
coefficient of volume compressibility 4.6.13
cohesion 4.7.2
cohesionless soil 4.3.30
cohesive column composite foundation 7.7.5
cohesive soil 4.3.29
collapse deformation 6.4.14
collapsible loess 4.3.22
colluvial soil 4.3.5
combination value of a load 3.4.7
compacted cement-soil column method 7.4.9
compacting method 7.1.3
compaction grouting method 7.5.4
compaction test 5.6.2
compensated foundation 8.3.5
composite compression modulus 7.7.10
composite foundation 7.1.6
composite foundation pile 9.1.10
composite foundation with settlement-reducing piles 9.1.6
composite pile 9.2.10
composite pile foundation 9.1.5
composite soil nailing wall 14.2.4
composition of soil 4.2.1
compression curve 4.6.10
compression index 4.6.15
compression zone depth 6.3.2
concealed engineering 15.0.4
cone penetration test 5.6.20
confined water 5.7.6
consistency limits 4.2.24
consolidated quick direct shear test 5.6.6
consolidated slow direct shear test 5.6.5
consolidated-drained triaxial test 5.6.11
consolidated-undrained triaxial test 5.6.10
consolidation method 7.1.2
consolidation of soil 4.1.1
consolidation settlement 4.6.5
consolidation test 5.6.3
constrained modulus 4.6.11
construction joint 15.0.6
contaminated soil 4.3.24
control grain diameter 4.2.9
conventional triaxial compression test 5.6.8
core drilling method 16.2.8
core recovery 5.5.7
corrosion grade 5.4.16
corrosion rate 8.4.4
corrosion resistance of concrete 8.4.3
corrosivity evaluation 5.4.14
Coulomb′s earth pressure theory 3.5.16
counterfort retaining wall 14.2.15
crack 5.2.16
crack monitoring 16.3.10
critical edge pressure 6.2.1
critical hydraulic gradient 5.7.21
crossed strip foundation 8.1.15
crosshole sonic logging 16.2.9
crushed stone 4.3.36
D
Darcy′s Law 3.5.23
datum mark 16.1.3
debris flow 5.3.5
deep foundation 2.0.14
deep mixing method 7.5.5
deep plate-load test 5.6.18
deformation modulus 4.6.12
deformation monitoring of surrounding rock for underground excavation 16.3.4
deformation of dissolution collapsibility 6.4.31
degree of consolidation 4.6.8
degree of liquefaction 13.2.6
degree of saturation 4.2.23
delta 5.1.8
density 4.2.12
depth of foundation 8.1.8
design basic acceleration of ground motion 13.3.3
design characteristic period of ground motion 13.3.4
design parameters of ground motion 13.3.2
design situations 3.3.1
design water level of defence buoyancy 3.4.14
detailed geotechnical investigation 5.4.4
diaphragm wall 14.2.17
differential settlement 6.3.4
dilation 4.6.17
dilatometer test 5.6.25
diluvial fan 5.1.3
diluvial soil 4.3.6
dip 5.2.10
dip angle 5.2.11
direct shear test 5.6.4
dispersive soil 4.3.23
displacement pile 9.2.4
dissolution collapsibility 6.4.29
disturbed soil 4.3.2
disturbed soil sample 5.5.11
drag 9.3.11
drainage basin 5.7.13
dry deep mixing method 7.5.7
dry density 4.2.17
dry unity weight 4.2.18
Duncan-Chang hyperbolic model 3.5.9
durability of foundation 8.4.1
dynamic bearing capacity 11.1.4
dynamic coefficient 3.4.11
dynamic compaction method 7.4.2
dynamic compaction replacement method 7.2.2
dynamic load 3.4.10
dynamic machine foundation 2.0.16
dynamic penetration test 5.6.21
dynamic settlement 11.1.5
dynamic triaxial test test 5.6.13
E
earth pressure at rest 14.3.1
earth replacing method 7.2.1
earthquake effect 13.2.7
earthquake hazard evaluation 13.3.6
earthquake subsidence 5.3.14
effect of pile group 9.1.11
effective depth of foundation 8.1.12
effective grain diameter 4.2.8
effective stress 4.5.4
effective stress principle 3.5.6
effective stress strength parameters 4.7.4
elastic foundation supported beam method 3.5.11
elastic fulcrum method 3.5.20
elastic half-space foundation model 3.5.2
electro-osmotic method 7.3.9
embedded depth 14.3.4
embedded foundation 11.2.5
end bearing pile 9.2.2
enforced sinking 10.0.8
engineering geologic columnar profile 5.4.12
engineering geologic profile 5.4.13
engineering geologic zoning 5.4.8
engineering geological condition 5.4.7
engineering geological evaluation 5.4.9
environmental impact assessment 5.4.10
equivalence beam method 3.5.22
equivalent load 11.1.2
equivalent shear wave velocity 13.2.3
excavation engineering 2.0.17
excavations monitoring 16.3.5
excess pore water pressure 4.4.9
expansion index 4.6.16
expansion joint 8.1.10
expansive soil 4.3.16
exploration 5.5.1
explosive compaction method 7.4.5
external caisson wall 10.0.3
F
factor of safety 3.2.3
factor of safety against basal heave 14.3.7
factor of safety against hydraulic failure 14.3.9
factor of safety against overturning 14.3.8
factor of safety against sliding 14.3.6
failure probability 3.2.6
fault 5.2.12
fill 4.3.42
fine-grained soil 4.3.28
fissure water 5.7.7
flat slab raft foundation 8.3.2
flexible joint 14.2.23
flexible pile composite foundation 7.7.7
floating caisson 10.0.9
flood land 5.1.6
flow net 4.4.16
flow soil 5.3.11
fluvial terrace 5.1.10
fossil river course 5.1.9
foundation 2.0.12
foundation additional pressure 3.4.17
foundation improvement 12.1.4
foundation pad 8.1.7
foundation pile 9.1.9
foundation set 11.1.1
foundation soil 2.0.6
foundation trench inspection 16.2.1
fraction 4.2.4
fracture grouting method 7.5.2
fracture zone 5.2.14
frame type foundation 11.2.3
free length 14.3.12
free swelling ratio 6.4.19
free water 4.4.2
freezing index 6.4.4
freezing method 15.0.12
freezing strength 6.4.10
frequent combinations of a load 3.4.8
friction pile 9.2.1
frost heave capacity 6.4.7
frost heave force 6.4.9
frost resistance of concrete 8.4.2
frozen heave factor 6.4.6
frozen soil 4.3.18
fully penetrating well 14.4.1
G
gelogic structure 5.2.2
geogrid 7.6.4
geological disaster 5.3.2
geomorphologic unit 5.1.2
geophysical exploration 5.5.12
geosynthetics 7.6.2
geotechnical design 2.0.5
geotechnical engineering 2.0.3
geotechnical investigation 2.0.4
geotechnical investigation report 5.4.11
geotextile 7.6.3
gradation of soil particles 4.2.5
grade of collapsibility 6.4.18
grain size 4.2.3
grain-size analysis test 5.6.1
grain-size distribution curve 4.2.6
granular column composite foundation 7.7.4
gravel 4.3.37
gravitational water 4.4.4
gravity retaining wall 14.2.14
green construction 15.0.8
ground fracturing 5.3.7
ground improvement 2.0.8
ground tremor 13.2.10
groundwater 5.7.3
groundwater control 14.1.4
groundwater level monitoring 16.3.8
grouting method 7.5.1
guide wall 14.2.18
gully 5.1.13
H
heat treament 7.8.5
heave-piping 5.3.9
heavy tamping method 7.4.3
height of foundation 8.1.9
high strain dynamic testing 16.2.10
holocene fault 5.2.13
horizontal jet grouting method 7.5.9
horizontal reinforcement composite foundation 7.7.2
humidity coefficient 6.4.26
hydraulic fracturing technique 5.6.32
hydraulic gradient 4.4.12
hydraulic head 4.4.11
hydraulic interrelation 5.7.11
hydrogeological investigation 5.7.1
I
immature deposits 4.3.10
immediate settlement 4.6.6
impervious layer 5.7.8
improvement method with admixture 7.1.4
incline 6.3.6
informative construction 15.0.7
initial collapse pressure 6.4.17
initial temperature of freezing 6.4.8
injection test 5.7.16
in-situ permeability test 5.7.15
in-situ rock stress test 5.6.29
in-situ shear test 5.6.28
in-situ superficial compaction method 7.4.1
internal caisson wall 10.0.4
internal friction angle 4.7.3
inverted beam method 3.5.13
inverted floor method 3.5.14
investigation during construction 5.4.5
island excavation 15.0.14
isolation method 7.8.3
isolation pile wall 11.3.5
isolation trench 11.3.4
J
jet grouting method 7.5.8
joint 5.2.15
K
K0-stress state 4.5.5
karst 5.3.15
karst cave 5.3.16
karstic earth cave 5.3.17
L
land subsidence 5.3.12
landform 5.1.5
landslide 5.3.18
lateral displacement monitoring 16.3.6
laterite 4.3.17
layerwise summation method 3.5.10
lightweight fill method 7.2.4
lime soil 15.0.3
lime soil foundation 8.2.3
lime-flyash column method 7.4.8
lime-soil column method 7.4.7
limit state 3.3.5
limit state of bearing capacity 3.3.6
liquefaction 13.1.3
liquefaction index 13.2.5
liquefaction potential 13.2.4
liquid limit 4.2.27
liquidity index 4.2.29
load distribution angle 8.2.5
load effect 3.4.1
loading test of batholith 16.2.2
loading test of composite foundation 16.2.3
local curvature 8.3.4
local incline 6.3.7
long and short pile composite foundation 7.7.8
long screw drilling 15.0.22
low strain integrity testing 16.2.11
Lugeon 5.7.19
M
m method 3.5.21
matric suction 4.5.9
maximum dry density 15.0.16
measuring point 16.1.4
micro-pile underpinning 12.2.5
Mindlin′s solution 3.5.5
modified characteristic Value of subsoil bearing capacity 6.2.5
Mohr-Coulomb strength criterion 3.5.1
monitoring 16.1.2
monitoring frequency 16.3.1
monitoring of settlement and deformation 16.3.3
N
natural angle of slope 4.7.8
natural density 4.2.16
natural foundation 2.0.7
natural unity weight 4.2.15
negative skin friction 9.3.9
net normal stress 4.5.10
net pressure of subgrade 3.4.19
neutral point of pile 9.3.10
non-displacement pile 9.2.5
non-self-weight collapsible loess 6.4.13
non-uniform subsoil 6.1.5
normally consolidated soil 4.3.44
O
open cut 14.2.1
openb caisson 10.0.1
optimized design of pile foundation stiffness to reduce differential settlement 9.3.12
optimum moisture content 15.0.15
organic soil 4.3.13
over consolidation ratio 4.6.9
overall curvature 8.3.3
overconsolidated soil 4.3.45
over-excavation 14.1.5
P
packed drain 7.3.6
packer test 5.7.18
pad foundation 8.1.3
panel 14.2.19
panel joint 14.2.22
panel stability 14.2.20
partial factor 3.2.4
partially penetrating well 14.4.2
passive earth pressure 14.3.3
passive isolation 11.3.2
peak strength 4.7.6
peat 4.3.11
peaty soil 4.3.12
perched water 5.7.4
percussion drilling 15.0.20
perennially frozen soil 4.3.19
permafrost table 6.4.3
permanent load 3.4.2
permit hydraulic gradient 5.7.22
persistent situation 3.3.2
phreatic line 4.4.17
phreatic water 5.7.5
physical indexes 4.2.2
pier static pressure pile underpinning 12.2.4
pile 9.1.1
pile cap effect coefficient 9.3.13
pile composite foundation 7.7.3
pile defects 16.2.7
pile foundation 2.0.15
pile group foundation 9.1.4
pile integrity 16.2.6
pile platform 9.1.2
pile underpinning 12.2.1
piled box foundation 9.1.8
piled raft foundation 9.1.7
pile-reinforced earth composite foundation 7.7.9
pillow method 7.2.3
pipe jacking method 15.0.9
piping 5.3.8
plastic limit 4.2.26
plasticity 4.2.30
plasticity chart 4.3.31
plasticity index 4.2.28
plate loading test 5.6.17
plugging effect 9.1.12
pneumatic caisson 10.0.7
point load test 5.6.16
pore pressure coefficient 4.4.10
pore water 4.4.6
pore water pressure 4.4.7
pore water pressure monitoring 16.3.9
porosity 4.2.20
post grouting for pile 9.2.7
post pouring strip 15.0.5
post-construction settlement 4.6.2
preconsolidation pressure of soil 4.1.3
predominant period 13.2.11
prefabicated vertical drain 7.3.7
prefabricated pile 9.2.8
preliminary geotechnical investigation 5.4.3
preloading and vacuum preloading method 7.3.4
preloading method 7.3.1
pre-ponding method 7.8.2
pressure on foundation soil 3.4.15
pressuremeter test 5.6.24
prestressed anchor 14.2.10
prestressed concrete pipe pile 9.2.9
primary consolidation 4.6.3
probability design method 3.1.3
pull moving 12.4.3
pull-out test of anchor 16.2.12
pull-out test of soil nail 16.2.13
pumping test 5.7.17
push moving 12.4.2
Q
quality test of diaphragm wall 16.2.14
quasi-permanent value of a load 3.4.9
quick direct shear test 5.6.7
quick-sand 5.3.10
R
radius of influence 5.7.20
raft foundation 8.1.5
Rankine′s earth pressure theory 3.5.17
recharge well 14.4.3
rectification 12.1.2
rectification by cutting off pile 12.3.7
rectification by digging near foundation 12.3.3
rectification by digging under foundation 12.3.2
rectification by loading 12.3.6
rectification by settlement 12.3.1
rectification by soaking 12.3.5
rectification by successive launching 12.3.8
rectification by taking off clay through jetting 12.3.4
reinforced earth 7.6.1
reinforcing method 7.1.5
relative density 4.2.31
reliability 3.2.5
reliability index 3.2.7
relief 5.1.1
remolded soil 4.3.3
replacement method 7.1.1
replacement ratio of composite foundation 7.7.11
representative value of a load 3.4.5
residual soil 4.3.4
residual strength 4.7.7
resonant column test 5.6.14
retaining and protecting for foundation excavation 14.1.2
retaining structure 14.2.2
rigid foundation 8.1.2
rigid joint 14.2.24
rigid pile composite foundation 7.7.6
rock 2.0.1
rock mass 5.2.1
rock quality desighation 5.5.8
rod sounding 5.5.2
rolling moving 12.4.5
root pile method 7.8.1
rotary excavate drilling 15.0.21
rotatory boring 15.0.19
rubble stone 15.0.1
rubble stone foundation 8.2.2
S
safety 3.2.2
safety factor of slope 14.3.5
safety grade 3.2.8
safety margin 3.2.1
salinity 6.4.32
salty expandability 6.4.28
salty soil 4.3.21
sand 4.3.38
sand column densification method 7.4.4
sand drain 7.3.5
sand wrapping foundation 7.8.4
saturated soil 4.3.25
scour depth 5.3.3
screw plate loading test 5.6.19
seasonally frozen soil 4.3.20
secant piles 14.2.9
secondary consolidation 4.6.4
secondary consolidation settlement 4.6.7
sedimentary soil 4.3.9
seepage failure 4.4.15
seepage force 4.4.14
seep-in grouting method 7.5.3
seismic coefficient 13.2.8
seismic ground motion parameter zonation map 13.1.2
seismic microzonation 13.3.5
seismic precautionary intensity 13.1.1
seismic response spectrum 13.2.9
self-balanced measurement method of pile bearing capacity 16.2.5
self-weight collapsible loess 6.4.12
self-weight pressure 3.4.16
self-weight stress 4.5.1
sensitivity 4.2.35
serviceability limit state 3.3.7
settlement 4.6.1
settlement correction factor 6.3.3
settlement curve 6.3.5
settlement joint 8.1.11
settlement monitoring 16.3.7
shaft resistance of pile 9.3.7
shallow flat ravine 5.1.12
shallow foundation 2.0.13
shear strength of soil 4.1.2
shear strength parameters of soil 4.7.1
sheet pile 14.2.7
shield driving method 15.0.10
shrinkage limit 4.2.25
silt 4.3.14
silt 4.3.39
silty clay 4.3.40
silty soil 4.3.15
single pile foundation 9.1.3
single safety factor method 3.1.2
site 13.2.1
site classification 13.2.2
site environment type 5.4.15
site stability 5.4.6
siting investigation 5.4.2
slice method 3.5.18
sliding moving 12.4.4
slope retaining 14.1.1
slurry deep mixing method 7.5.6
slurry drilling method 15.0.18
soil 2.0.2
soil column densification method 7.4.6
soil mixed wall 14.2.8
soil nailing wall 14.2.3
soil sampler 5.5.9
soil skeleton 4.4.5
soldier pile 14.2.5
specific gravity of soil particle 4.2.14
spread foundation 8.1.1
stability of subsoil 2.0.11
standard frost penetration 6.4.1
standard penetration test 5.6.22
standard thawing depth 6.4.2
static determinate approach 3.5.12
static loading test of pile 16.2.4
static pore water pressure 4.4.8
static pressure pile underpinning 12.2.2
stiffness of subsoil 11.1.3
stress history 4.5.7
stress path 4.5.6
stress ratio of pile to soil 7.7.12
stress recovery method 5.6.31
stress relief method 5.6.30
stress-strain relationship of soil 4.5.8
strike 5.2.9
strip foundation 8.1.4
strip foundation below column 8.1.13
structural block 5.2.4
structural joint 14.2.21
structural plane 5.2.3
structural type of rock mass 5.2.5
structure moving 12.1.3
structure moving system 12.4.1
structure of soil 4.2.33
strut 14.2.13
subangular boulder 4.3.34
subgrade reaction 3.4.18
subsidence 5.3.13
subsoil deformation 6.1.6
subsurface runoff 5.7.14
surcharge preloading method 7.3.2
surface runoff 5.7.12
surface water 5.7.2
surroundings around foundation excavation 14.1.3
Swedish circle method 3.5.19
swelling force 6.4.25
swelling ratio 6.4.20
T
tailing 4.3.43
talus apron 5.1.11
Terzaghi′s theory of one-dimensional consolidation 3.5.7
testing 16.1.1
test-pitting 5.5.4
thaw slumping 6.4.11
thawing index 6.4.5
thixotropy 4.2.36
threshold hydraulic gradient 4.4.18
tip resistance of pile 9.3.8
top beam 14.2.11
top-down method 15.0.11
toppling 5.3.6
total stress 4.5.3
total stress strength parameters 4.7.5
transient situation 3.3.3
trenching 5.5.3
triad soil 15.0.2
triad soil foundation 8.2.4
U
ultimate bearing capacity of subsoil 6.2.2
ultimate horizontal bearing capacity of single pile 9.3.3
ultimate vertical bearing capacity of single pile 9.3.1
ultimate vertical uplift bearing capacity of single pile 9.3.5
unconfined compressive strength test 5.6.12
unconsolidated-undrained triaxial test 5.6.9
underconsolidated soil 4.3.46
underwater concrete perfusion 15.0.23
undisturbed soil 4.3.1
undisturbed soil sample 5.5.10
unembeded foundation 11.2.4
uniform subsoil 6.1.4
unit weight 4.2.13
unsaturated soil 4.3.26
uplift pile 9.2.3
V
vacuum preloading method 7.3.3
value of shrinkage deformation 6.4.23
value of swelling deformation 6.4.22
value of swelling-shrinkage deformation 6.4.24
vane shear test 5.6.23
variable load 3.4.3
vertical reinforcement composite foundation 7.7.1
vibration isolation 11.1.6
vibration isolator 11.3.3
vibration test 5.6.27
vibro replacement stone column method 7.4.10
vibro-compaction method 7.4.11
void ratio 4.2.21
W
waling 14.2.12
walk-over survey 5.4.1
wall type foundation 11.2.2
water content 4.2.22
water content ratio 4.2.32
waterproof curtain 14.4.5
wave velocity test 5.6.26
weak intercalated layer 5.2.7
weak structural plane 5.2.6
weak substratum 6.1.3
weathering 5.3.4
well resistance 7.3.8
Winkler′s foundation model 3.5.3
本标准用词说明
1.为便于在执行本标准条文时区别对待,对要求严格程度不同的用词说明如下:
1)表示很严格,非这样做不可的:
正面词采用“必须”,反面词采用“严禁”;
2)表示严格,在正常情况下均应这样做的:
正面词采用“应”,反面词采用“不应”或“不得”;
3)表示允许稍有选择,在条件许可时首先应这样做的:
正面词采用“宜”,反面词采用“不宜”;
4)表示有选择,在一定条件下可以这样做的,采用“可”。
2.条文中指明应按其他有关标准执行的写法为:“应符合……的规定”或“应按……执行”。
标签:
本文链接:/guifan/4133.html
版权声明:站内所有文章皆来自网络转载,只供模板演示使用,并无任何其它意义!